5 research outputs found

    Imaging Multidimensional Therapeutically Relevant Circadian Relationships

    Get PDF
    Circadian clocks gate cellular proliferation and, thereby, therapeutically target availability within proliferative pathways. This temporal coordination occurs within both cancerous and noncancerous proliferating tissues. The timing within the circadian cycle of the administration of drugs targeting proliferative pathways necessarily impacts the amount of damage done to proliferating tissues and cancers. Concurrently measuring target levels and associated key pathway components in normal and malignant tissues around the circadian clock provides a path toward a fuller understanding of the temporal relationships among the physiologic processes governing the therapeutic index of antiproliferative anticancer therapies. The temporal ordering among these relationships, paramount to determining causation, is less well understood using two- or three-dimensional representations. We have created multidimensional multimedia depictions of the temporal unfolding of putatively causative and the resultant therapeutic effects of a drug that specifically targets these ordered processes at specific times of the day. The systems and methods used to create these depictions are provided, as well as three example supplementary movies

    Imaging Multidimensional Therapeutically Relevant Circadian Relationships

    Get PDF
    Circadian clocks gate cellular proliferation and, thereby, therapeutically target availability within proliferative pathways. This temporal coordination occurs within both cancerous and noncancerous proliferating tissues. The timing within the circadian cycle of the administration of drugs targeting proliferative pathways necessarily impacts the amount of damage done to proliferating tissues and cancers. Concurrently measuring target levels and associated key pathway components in normal and malignant tissues around the circadian clock provides a path toward a fuller understanding of the temporal relationships among the physiologic processes governing the therapeutic index of antiproliferative anticancer therapies. The temporal ordering among these relationships, paramount to determining causation, is less well understood using two- or three-dimensional representations. We have created multidimensional multimedia depictions of the temporal unfolding of putatively causative and the resultant therapeutic effects of a drug that specifically targets these ordered processes at specific times of the day. The systems and methods used to create these depictions are provided, as well as three example supplementary movies

    LINC Complexes: Macromolecular Assemblies of the Nuclear Envelope Connecting the Nucleoskeleton to the Cytoskeleton

    No full text
    Mentor: Didier Hodzic From the Washington University Undergraduate Research Digest: WUURD, Volume 4, Issue 1, Fall 2008. Published by the Office of Undergraduate Research. Henry Biggs, Director of Undergraduate Research and Associate Dean in the College of Arts & Sciences; Joy Zalis Kiefer, Undergraduate Research Coordinator, Co-editor, and Assistant Dean in the College of Arts & Sciences; Kristin Sobotka, Editor

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore